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An intrinsic principle of least action is presented for the intrinsic dynamism of 
chemical reactions. Then, as the stationary trajectory, a meta-IRC (intrinsic 
reaction coordinate) draws a geodesic curve in a rigged Riemannian space. 
This establishes a geodesic law for the intrinsic dynamism. Moreover, a dia- 
grammatic perturbation theory is formulated for the intrinsic dynamism, and a 
dynamical interaction between a chemically reacting system and a background 
system is investigated. Then, the structural stability of the system is discussed 
using a new concept of the dynamical potential field. An example is given in 
order to elucidate the present theory. 
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I. Introduction 

The ultimate goal of modern theoretical chemistry is supposed to be the establish- 
ment and examination of the foundation of the principle of chemical reactions. 
Quantum chemistry provides not only a theoretical framework for this activity, 
but it also provides a scheme of calculation to make a quantitative assessment of the 
theory. In particular, recent developments in computational quantum chemistry 
have acquired an outstanding progress in the computation of the adiabatic poten- 
tial hypersurfaces of chemically reacting systems, and the development of molecular 
beam experiments has added direction and impetus. The determination of the 
hypersurface itself is one of the most difficult computational problems, but there 
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still remains the problem of how the chemically reacting system evolves through it. 
In this connection, a significant advance came with the introduction of the frontier 
orbital theory [1] and the Woodward-Hoffmann rules [2] with respect to stereo- 
selection and orientation of chemical reactions. 

In the present paper, however, we shall direct our attention at another approach 
to chemical reactions. This is the IRC approach presented by Fukui [3] and develop- 
ed by Fukui et al. [4-7] and Morokuma et al. [8, 9]; with a potential surface estab- 
lished, we seek the IRC through it, and arrive at the reaction rate constant by a 
suitable computational technique. Since the differential equation postulated by 
Fukui for the definition of the IRC is based on the gradient field of the potential 
[3], study on the geometrical properties of the chemically reacting system is central 
to the theoretical foundation of the IRC approach. Recently, from the detailed 
geometrical study of the adiabatic potential hypersurface, the intrinsic dynamism 
inherent to the IRC approach has been developed [10, 11]. In particular, by intro- 
ducing a concept of meta-IRC, it has been clarified that a stable equilibrium point, 
that is the point of an equilibrium structure of the system, is realized as an accumu- 
lation point of the meta-IRC's which tie in its neighborhood a set of non-equili- 
brium points of the potential. This leads to a natural concept of cell structure of 
the chemically reacting system, where an intercell boundary appears by which an 
initial reactant cell and a final product cell are discriminated [11]. The IRC is then 
given by a particular meta-IRC which smoothly connects the terminal cells of the 
chemical reaction through the transition point located on the intercell boundary 
[I1]. Stable limit theorems with respect to the intrinsic nature of the normal 
vibrations at the equilibrium point are also characteristic of the intrinsic dynamism 
[11]. 

On the other hand, as is well known, the fundamental principles of mechanics are 
formulated in terms of variational principles. The most famous one is the principle 
of least action presented by Maupertuis, who originally attempted to obtain for 
the corpuscular theory of light a theorem analogous to Fermat's principle of least 
time [12]. Maupertuis' principle of least action provides a real dynamical trajectory 
with a stationary character: for holonomic conservative system, an action integral 
evaluated along a real trajectory has the stationary value against deformation of 
the integral path with respect to a virtual trajectory adjacent to the real trajectory, 
with the time being correlated to the coordinates in such a way as to satisfy the 
conservation law of energy [12]. Maupertuis' principle of least action can be 
reformulated into Hamilton's principle, where, for a virtual trajectory, the time 
has the same terminal values as the real trajectory [12]. 

Likewise, from a geometrodynamical viewpoint, a locus of a trajectory satisfies a 
geodesic law: a trajectory draws a geodesic curve in a rigged Riemannian space. 
For example, Einstein's geodesic variational principle for the world line is the most 
famous; in the relativistic theory of gravitation, the world line draws a geodesic 
curve in a rigged Riemannian space whose metric is determined by the distribution 
of the source of gravitation [13]. Also, in the non-relativistic limit, Jacobi's 
geodesic principle is available; note that this is a reformulation of Maupertuis' 
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principle of least action [12]. In this connection, Einstein's geodesic variational 
principle for the world line can be considered to be a reformulation of a relativ- 
istic principle of least action [13]. 

In the first part of the present paper, we attempt to establish two kinds of funda- 
mental variational principles for the intrinsic dynamism of chemical reactions. 
One is the intrinsic principle of  least action, (2.5), and the other is the geodesic 
variational principle, (2.13). The former "dynamical" variational principle states 
that the "extended" action integral as defined by (2.2) has a stationary value for 
any part of an actua~ meta-IRC in the cell, as compared with neighboring paths 
which have the same terminal points and the same accumulation time (AT) T [11] 
as the actual meta-IRC. The latter "geometrical" variational principle states that 
a meta-IRC is a geodesic curve in a rigged Riemannian space: this space is here- 
after referred to as R*. The relationship between these "dynamical" and "geo- 
metrical" variational principles is also shown, as in (2.20). 

On the other hand, everything in the universe is interconnected and correlated 
with everything else. If we single out a chemically reacting system, we have divided 
the universe into two parts. All we have not singled out will be called the environ- 
ment or the background. The background dependence of a chemically reacting 
system may be measured as a distortion of the rigged Riemannian space R*, because 
a meta-IRC should draw a geodesic curve in R* even under the influence of the 
background effect. (A particular perturbation may destroy the geodesic law, but 
such a case is not treated in the present paper.) Since the metric tensor g,j of R* 
is determined by the adiabatic potential U and the metric tensor a~j of the pri- 
mordial Riemannian space R,, as is shown in (2.11) and (2.12), it may be of 
primary importance how to correlate the background effect into the perturbation 
of U and a,j in terms of the intrinsic dynamism. 

Thus, in the second part of the present paper, we shall develop a perturbation 
theory of the intrinsic dynamism of chemical reactions, which allows the perturba- 
tional treatment of U and a~j. Then, a diagrammatic perturbation series is found for 
the perturbed solution of meta-IRC. Using this perturbation theory, a mechanism 
of dynamical energy transfer between a chemically reacting system and a back- 
ground system will be discussed in terms of a new concept of the dynamical poten- 
tial field, where the distortion of the metric tensor a~j plays an important role. The 
dynamical potential field is found to be intimately related with the stability criterion 
of a chemically reacting system. 

2. Variational Principles 

2.1. Intrinsic Principle of Least Action 

Let the "extended" action A with respect to a time-like parameter 0 be defined by 

A = ~ 2T(q', dq*/dO) dO (2.1) 
d 



278 A. Tachibana and K. Fukui 

with 

2 T  = a~,(dq'/dO)(dqJ/dO), (2.2) 

where qi(i = 1 . . . . .  n) are the n generalized coordinates in the configuration 
Riemannian space R,  which describes the nuclear geometry of  the system as a 
function of 0, T is the "extended"  kinetic energy in terms of the "extended"  
velocities dq~/dO (i = 1 . . . . .  n), and a~j is the metric tensor of R.. The extended 
action A can be interpreted as the classical "ac t ion"  if we multiply an appropriate 
scaling factor, if necessary. 

As is well known, Maupertuis' principle of least action states that, along a real 
trajectory, the action is stationary with respect to virtual variation of the trajectory 
[121: 

8A = 0 along non-relativistic trajectory with 0 = t, (2.3) 

where t is the realistic time. Likewise, Einstein's geodesic variational principle for 
the world line can be put into a form of relativistic principle of least action [13]: 

~A = 0 along the world line with 0 = Sw, (2.4) 

where Sw is the length of the world line chosen as a parameter of the world line. 

Now, in the case of the intrinsic dynamism with respect to the AT r, we can show 
that an "intrinsic" principle of least action holds as 

8,,1 = 0 along the meta-IRC with 0 = ~. (2.5) 

More precisely, the extended action A has a stationary value for any part of a 
meta-IRC in the cell, as compared with neighboring paths between the same 
termini for which the AT is correlated to the coordinates in such a way as to have 
same terminal values. 

P r o o f  o f  the intrinsic principle o f  least action. First, we shall prove that the extended 
kinetic energy T relates with the AT-dependent behavior of the adiabatic potential 
U along a meta-IRC in the form: 

2 T  = d U / d r  along the meta-IRC. (2.6) 

Proof.  The AT-dependence of U is represented by 

d U / d ,  = (~U/~q*)(dq'/dz). (2.7) 

Using the IRC equation, of the form (3.19) in [11 ], the first derivative of U is given 
by 

eU/Oq* = a,j dqJ/dr. (2.8) 

Substituting (2.8) into (2.7), we have (2.6). Second, we shall prove that a meta-IRC 
satisfies the Euler equation of  the variational problem (2.5) as 

(d/dT)[~(2T)/~(dq~/dr)] - ~(2T) /aq '  = 0 along the meta-IRC. (2.9) 
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Proof. Using (2.6) and (2.7), we have 2T = (~U/~q~)(dq~/dz), and then we obtain 
(2.9) immediately: 

(d/dT)[a(2T)/O(dq'/dT)] = (d/dz)[Of/Oq'] 

= (e2U/aq' ~qO(dqqd~) 

= ~ ( 2 T ) / ~ q ' .  

As a whole, the intrinsic principle of least action is proved. 

Moreover, we have obtained from (2.1) and (2.6) the stationary value of the ex- 
tended action A along meta-IRC; this is the increment of the potential energy from 
the initial terminus to the final terminus: 

A = AUalong the meta-IRC. (2.10) 

2.2. Geodesic Variational Principle 

Here, we shall show that a meta-IRC is a geodesic curve in the rigged Riemannian 
space R* whose metric tensor is given by 

g~ = A1Ua~j (2.11) 

where A 1U is Beltrami's differential parameter of the first kind with respect to the 
adiabatic potential U: 

AI U = a'S(eU/Oq')(Of/aqO. (2.I2) 

Then, a meta-IRC satisfies the geodesic variational principle: 

f dsg = 0 along the meta-IRC, (2.13) 3 

where the line element ds o of the meta-IRC is represented by using the first funda- 
mental form of R* as 

asp = g,j dq' dq j. (2.14) 

Note that the relationship with the primordial configuration Riemannian space R, 
is found to be 

ds~ = A~U ds 2, (2.15) 

where ds 2 is the first fundamental form of R,: 

ds 2 = a~ dq ~ dq ~. (2.16) 

The conspicuous property of the meta-IRC as a stationary curve is illustrated in 
Fig. 1. 

Proof o f  the geodesic variational principle. First, we shall prove that Beltrami's 
differential parameter of the first kind (2.12) is given along a meta-IRC by 

A~ U = (dU/ds) 2 along the meta-IRC. (2.17) 



280 A. Tachibana and K. Fukui 

A 

B 

Fig. 1. Meta-IRC draws a geodesic curve (A --~ B) in 
the rigged Riemannian space R* 

Proof Using the IRC equation, of the form (3.10) in [11], we have 

~U/Oq' = (dU/ds)a~j(dqJ/ds). (2.18) 

Substituting (2.18) into (2.12) and using (2.16), we have (2.17). Second, we shall 
prove 

ds~ = (2T dT) 2 along the meta-IRC. (2.19) 

Proof Substituting (2.17) into (2.15) and using (2.6), we have (2.19). This proves 
that the variational principles (2.5) and (2.13) are identical along the meta-IRC in 
the cell; and therefore, the meta-IRC satisfies the geodesic variational principle, 
(2.13), as well as the intrinsic principle of least action, (2.5). 

It should be noted that this geometrical variational principle, (2.13), is not merely 
a reformulation of the dynamical principle, (2.5). The two variational principles 
are presented independently. But, interestingly, the absolute values of the two 
kinds of functionals become the same along a meta-IRC in the cell: 

IA] = f ds o = ]AU]. (2.20) 

Note that the intrinsic principle of least action and the geodesic variational prin- 
ciple are valid in the interior of a cell, where the stationary curve, that is a meta- 
IRC, is given as a smooth function of AT. Of course, it is possible to apply these 
variational principles for the intrinsic dynamism confined in the boundary of a cell 
excluding the equilibrium points. Also, by an appropriate limiting technique of the 
integration, it may be possible to extend the variational principles in order to 
allow the equilibrium points to be the termini of the integral. However, in order to 
establish the stationary nature of an IRC, which is nothing but a particular meta- 
IRC, a subtle problem arises; since an IRC crosses an intercell boundary, from a 
reactant cell to a product cell, a difficulty about the variational problem through 
the boundary of a cell should be overcome. Here, it should be remembered that an 
IRC has an accumulation point, that is a transition point, on the intercell boundary 
from either cell [11]. Hence, a remedy for this kind of difficulty may be given by 
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separating the integrand into two parts: from a reactant cell to a transition point, 
and from a transition point to a product cell. Then, the variational principles may 
be applicable in due course. 

A clear illustration of the applicability of the geodesic variational principle to the 
IRC will be shown in Sect. 4 using a model potential surface. 

Thus, the stationary nature of the intrinsic dynamism of chemical reactions is 
found to be governed by the variational principles. One may say that this establishes 
a teleological character of the intrinsic dynamism. 

3. Perturbation Theory 

In this section, we shall develop a perturbation theory of the intrinsic dynamism. 

3.1.  Genera l  T h e o r y  

3.1.1. IRC Equation 

The IRC equation has been given in a compact form as [11] 

d q ' ( r ) / d z  = vr162 (i = 1 . . . . .  n) (3.1) 

where v ~ (i = 1, . . . ,  n) are the contravariant components of the gradient field of the 
adiabatic potential U: 

v ~ = a ~J OU/Oq j. (3.2) 

The general solution of the IRC equation, that is the meta-IRC, constitutes a one- 
parameter continuous group G1. Using the generator X of G1, namely 

X = v ~ ~/~q~, (3.3) 

the locus of the meta-IRC can be represented by [11] 

q'(~-) = R(% ~-o)q~(~-o), q~(r) = R(~-, ro)q~(~-o) (3.4) 

with 

R ( r ,  "Co) = eX(~-~o ~. (3.5) 

Here, R is an operator which governs the time (AT)-evolution of the reacting system 
along the meta-IRC: this operator is now referred to as the intrinsic reaction 
operator. 

Now, it should be noted that the IRC equation can be reduced from (3.1) to an 
alternative form using the generator X of G1 as 

dq'(-r)/d~ = Xq~(z),  dq~(r)/d~---- Xq,(r). (3.6) 

The analogy of this form (3.6) with the form of the well-known time-dependent 
SchrSdinger equation is remarkable: 

d l ~ F ( t ) ) / d ( - i t / h )  = H I W f t ) )  , (3.7) 
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where ~F(t) is the time-dependent wave vector and H is the Hamiltonian. Then, the 
following correspondence is found between the IRC equation (3.6) and the time- 
dependent Schr6dinger equation (3.7): 

z § - i t / h  (3.8) 

q'(O or q~(z) ~ IW(t)> (3.9) 

X~--r H. (3.10) 

Likewise, we obtain the following correspondence between the intrinsic reaction 
operator and the quantum mechanical evolution operator U: 

R(z,  Zo)+-~ U(t, to). (3.11) 

It follows that the intrinsic reaction operator satisfies the basic equations, analogous 
to those with respect to the quantum mechanical evolution operator, as follows: 
1) the differential equation, 

dR(r,  Zo)/d'r = XR(z ,  Zo), (3.12) 

and 2) the integral equation, 

R(z,  Zo) = 1 + XR(z ' ,  Zo) dr'. (3.13) 
~0 

Now, let us consider a perturbation of a meta-IRC. Suppose a perturbation of the 
gradient field in the form 

v t = v (~ + lY, (3.14) 

where v (~ (i = 1 . . . . .  n) are the unperturbed components and ~ (i = 1 . . . . .  n) 
are the components of the perturbation. Then, the generator X is represented by 

X = X (~ + .~', (3.15) 

where 

X(o~ = v(O~ ~/Oq~, (3.16) 

(3.17) 

We assume that the unperturbed solution of the intrinsic reaction operator is 
available: 

R(~ to) = e x(~176 (3.18) 

and that the unperturbed solution is obtained as 

q(O~,(~) = R(O,(z, ~.o)q,(zo) ' (3.19) 

q~O~(~.) = R(O~(~., ~.o)q,(zo)" 

Then, let R be given by 

R = R(~ (3.20) 
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where/~ is the intermediate reaction operator. The intermediate reaction operator 
satisfies the following differential equation: 

d~ldT  = ~fl~, (3.21) 

where )~t is the intermediate generator defined by 

A'x = Rc~176 (3.22) 

Also, the intermediate reaction operator satisfies the integral equation 

/~(T, "0) = 1 + ,~I(T')/~(T', TO) dT' (3.23) 
o 

and the solution may be given by an iterative procedure as 

09 

~(r,  To)= 1 + ~_, /~<m)(r, T0), (3.24a) 
m = l  

where 

~',(T, To) = ~ d'~,,...d'~l ~?I(T~)'"" s (3.24b) 
>~m>'">~l>zO 

Using (3.20), (3.22), (3.24), and Dyson's chronological operator P [14], the intrinsic 
reaction operator is found to be 

R(T, To) = R(~ "o)P exp d~-'J~(T') (3.25a) 

o r  

R(T, "o) = R~~ To) + ~ R~m~(T, T0), (3.25b) 
r t l = l  

where 

R~m)( r, ~'o) = f d~rn...a/~l R~~ r, ~'ra)-~Y(7"m) 
Jz >z~)...)Zl)Z o 

x . . .  x R<~ T1)JT(T1)B~0)(T1, T0)- (3.25C) 

Each term in this expansion (3.25b) describes the individual contribution from the 
perturbation of the gradient field as is shown in Fig. 2. For example, the zeroth- 
order diagram found in Fig. 2a describes the unperturbed path, and the first-order 
diagram found in Fig. 2b describes the sequence of 1) the unperturbed reaction 
path from To to rl, 2) the application of the perturbation at T1, and 3) the unper- 
turbed reaction path from T1 to ~- under the change of direction caused by the 
perturbation. If  we evaluate the in + 1 terms R ~~ R ~ . . . . .  R (m) in (3.25b), then 
the meta-IRC is represented in terms of the ruth degree of accuracy with respect to 
the perturbation. 
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Fig. 2. Diagram of a perturbed meta-IRC: a) zeroth-order, b) first-order, c) second-order 
diagram. Solid line shows an unperturbed path, and wavy line shows a perturbation caused by a 
perturbation generator ~" at each AT 

Furthermore, it may be more tractable to obtain first, the unperturbed solution 
(3.19), and second, the deviation from the unperturbed solution using an alteration 
operator A in the form: 

q'(r) = A(~-, r0)q(~ q+(r) = A(r, ro)q+(~ (3.26) 

In this case, the alteration operator is represented by 

A = RR (m-1 (3.27) 

or 

A = R(~ (~ (3.28) 

For small value of Ar = r - to, the series expansion of the alteration operator 
with respect to Ar may be useful: 

A(r, to) = ~ (A~'m/m!)fm, (3.29a) 
m = 0  

where 

fm = ~ ( - -1)~Cd X(~ + "~]m-r[X~m] ~" (3.29b) 
r = 0  

For example, we have 

f0 = 1, (3.29c) 

f l  = )7, (3.29d) 

f2 = X(~ )~X(~ + J~- (3.29e) 

Provided that the operators X (~ and X commute, then we have 

f,, = .ey m (3.30) 



Intrinsic Field Theory of Chemical Reactions 285 

and the alteration operator is given in a simple form 

A(r, ~o) = e ~"- '0 .  (3.31) 

3.1.2. Hessian Matrix 

Using a Dirac bracket representation, the inner product in R, [10] is conveniently 
represented by 

(e~ I es) = 8}, (e, l e j) = a,j. (3.32) 

Then, introducing a Hessian operator atg in the form, 

.r = [e') H,,(e~[, (3.33) 

the eigenvalue equation of the normal vibrations [10] can be represented by 

(~ = 1 . . . . .  n) (3.34) 

with 

where 

(3.35) 

(3.36) 

(3.37) 

The formal manipulation of the perturbational treatment with respect to the 
normal vibrations is analogous to that of the quantum mechanical eigenvalue 
problem of the Hamiltonian H, with H replaced by ~ .  

These perturbational treatments of the meta-IRC and the Hessian matrix are 
general, and therefore, the perturbation of 1) the metric tensor a~j of the Riemannian 
space Rn, as well as 2) the potential function Ucan be treated on an equal theoretical 
footing. 

We shall apply the present perturbation theory for a particular problem in Sect. 
3.2. 

3.2. Application to a New Concept of the Dynamical Potential Field 

3.2.1. Dynamical Perturbation 

Consider a chemically reacting system A composed of NA nuclei and a background 
system M composed of N~ nuclei as is schematically illustrated in Fig. 3. Then, 
the Lagrangian of the total system A + M is given by 

L = (1/2):~(A) 2 + (1/2)k(M) 2 - UA - UM - UAM, (3.38) 

where UA.M is the potential function of each system A, M, and UAM is the inter- 
action potential function between A and M (such as intermoIecular potential). 
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Fig. 3. Chemically reacting system A and initially 
frozen background system M. An arrow indicates 
dynamical energy flow 

The configuration vectors are represented in the 3(NA + NM)-dimensional Eucli- 
dean space as 

x = (x(A), x(M)) (3.39) 

with 

x(A) = (x 1, . . . ,  xS~A), (3.40) 

x(M) = (XaNA + 1, . . . ,  XaNA+ 3NM)" (3.41) 

Of course, the configuration space of each of the individual systems A and M itself 
constitutes the 3NA- or 3NM-dimensional Euclidean space, respectively. The line 
element ds in each space is given by the first fundamental form as 

3NA 

ds(A) 2 = ~, (dxt) 2, (3.42) 
t = l  

3NA + 3NM 

ds(M)2 = ~ (dxt)L (3.43) 
t=3NA+I 

The kinetic energy is then given by 

(1/2)a~(A): = (1/2)(ds(A)/dt) 2, (3.44) 

(1/2)~(M) 2 = (1/2)(ds(M)/dt) 2. (3.45) 

Now, provided that the interaction UA~t is very weak, 

UAM = weak, (3.46) 

then we may consider that there exists only the isolated system A, and that the 
presence of the background system M may be neglected. In this case, suppose that 
the system A is described by the n generalized coordinates q* (i = 1 . . . . .  n) then 
the first fundamental form (3.42) is written as 

d s ( A ) 2  = ,,(o) a~ ,  ,,ij ,,~ dq j (3.47) 

with 

3NA 

a(.9) = E (Oxt/Oq~(Oxt/OqJ)" (3.48) lJ 
t = l  
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Note that the generalized coordinate system constitutes the n-dimensional Rieman- 
nian space Re, ~ whose metric tensor is given by (3.48). As a whole, the Lagrangian 
of the total system can be approximated to be 

L "~ L ~~ -~ (1/2)a~t~ j - U ~~ (3.49) 

where 

U ~~ UA. (3.50) 

This is the starting point to the succeeding treatment. 

We shall treat the perturbation theory of L (~ in a particular case. The treatment 
proceeds in three stages as the accuracy of the treatment improves. In the third 
stage of the treatment, a new concept of the dynamical potential field will appear. 

I) First stage. Let us consider the case where the system A is selectively activated 
under the condition (3.46), and where the background system M is held fixed as if 
the zero-point vibrational motions were frozen. This case may occur, for example, 
when a) a molecular system A in a large molecular aggregate (such as a molecular 
crystal) is activated by a laser beam, or b) in a molecular system, a set of normal 
modes A are selectively activated by a laser beam (in this case, the separation of A 
with the background system M may be performed with respect to the normal 
coordinates rather than the Cartesian coordinates), and c) a chemical reaction in a 
system A is initiated under a weak interaction with the solvent M. Then, the 
Lagrangian of the total system may be represented by that of the isolated system A 
under the perturbation of a field � 9  

L --- L ~~ - r (3.51) 

In this representation, the perturbation field is given by 

= UAM + r (3.52) 

where a)~t is brought about from the Lagrangian of the background system M: 

CM = Uu - (1/2)i(M) 2. (3.53) 

Under the frozen condition for the dynamical motion of M, namely, 

x(M) = constant vector, (3.54) 

the field CM is merely a constant: 

CM(frozen) = UM = const. (3.55) 

Hence, the Lagrangian of the total system can be represented by 

L = L m - (1/2)a~)~ j - U m, (3.56) 

where U m is the potential field of the system A under the static perturbation 
UAM: 

U m = UA + UAM + const. (3.57) 

Apparently, in this stage, the perturbation theory of Sect. 3.1 is applicable. 
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H) Second stage. Let us consider the second stage of approximation, where the 
dynamical motion of the background system M is almost fixed frozen but a slight 
configurational change may take place under the influence of the system A. In 
other words, the background system M is quasi-frozen and the time-evolution is 
brought about through the dynamics of A. This stage may correspond to a situation 
where a part of M which is most closely connected with A through the perturbation 
UAM becomes slowly activated. In this stage, as the motion of the quasi-frozen 
configuration of M is slow, the kinetic energy part of the field ~ra may be neglected: 

Ok(quasi-frozen) = Uu = a function of q~. (3.58) 

Hence, the Lagrangian of the total system may be represented by 

L = L nn - (1/2)a~)~ j - U tin, (3.59) 

where U tm is the potential field of the system A under the static perturbation 
UAM + UM: 

U t m =  UA + UAM + UM = a function ofq  ~. (3.60) 

Also, at this stage, the perturbation theory of Sect. 3.1 is applicable without 
difficulty. 

III) Third stage. Now, we shall consider the dynamical motion of the background 
system M. In this case, the dynamical part of the field Or~ should be explicitly 
taken into account: 

�9 M(dynamical) = U~ - (1/2)k(M)L (3.61) 

It should be noted that the time-evolution of the system M is assumed to be brought 
about only through that of A; therefore, the dynamical part of cI)M is given from 
(3.45) by 

(1/2)~(M; x(A)) 2 = (1/2)(~s(M)/~q~)(~s(M)/~qJ)(tVl', (3.62) 

where q~ (i = 1, . . . ,  n) are the generalized coordinates of A. Thus, the Lagrangian 
of the total system may be represented by 

L = L tnn --- (1/2)a~j~tt~ J - U tnI ] ,  (3.63) 

where a~j and U am are given by 

,,7(0) a,j ",s + (Ss(M)/~q')(Ss(M)/~q ~), (3.64) 

U tHrJ = U t m =  UA + UA~ + U~. (3.65) 

Here, the s(M) = s(M; q~(A)) in (3.62) and (3.64) will be referred to as the dyna- 
mical potential field. We have obtained now the Lagrangian in the n-dimensional 
Riemannian space R, whose metric tensor is given in the modified form (3.64). 
Since the coordinate system is mass-weighted, the modification of the metric 
tensor implies that the dynamical perturbation results in renormalization of nuclear 
masses of the system A. In other words, under the dynamical perturbation of this 
kind, the "dressed-particle" having the effective mass appears (note that this kind 
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of perturbation is of purely dynamical nature, and hence, may in some cases 
compensate that of purely static nature such as UA• and UM). 

TO conclude, we may say that the dynamical motion of the system A disturbs the 
background field ~, which finally affects the dynamism of A, yielding the dressed- 
particles. 

In this connection, it is well-known, in the perturbation theory of the effective mass 
of an electron, that the interaction of electron with phonon affects the effective mass 
of the electron [I 5]; we have shown, in a closed form, a new type of the concept of 
effective mass that is of purely dynamical origin. 

Since the dynamical potential is given by the length of the dynamical motion of 
the multidimensional vector x(M), it is positive definite, and we can estimate the 
warming efficiency of the background system M in terms of the gradient of the 
dynamical potential. 

In this stage, also, the perturbation theory of Sect. 3.1 will be applicable. Some of 
the results peculiar to the present stage of the dynamical perturbation will be 
discussed in detail in Sect. 3.2.2. 

3.2.2. Application of the Perturbation Theory 

I, H )  First and second stages. In these stages, the perturbation field is of purely 
static origin. If we write 

U = U (~ + U (1), (3.66) 

where U <1> is the perturbation, then we have, for the solution of the alteration 
operator (3.29), 

f l  = a<~ j) O/Oq', (3.67) 

A = a(~176176 (~ O/Oq z 

- a~O>~y(OU(l>/OqY)(D~O>UCO>)aCO>k~ O/Oq ~ 

+ a(~176176 O/Oq z 

+ a(~176 ~ (3.68) 

where ~,~yn(~ is the second-order differential operator given in R(. ~ [11 ]: 

D~> = ~21Oq, ~qy _ r~>k ~/Oq~. (3.69) 

Note that the first-order correction off~ exactly vanishes on the surface perpendi- 
cular to the gradient field of U <~ in R~ ~ For the normal vibrations, we have the 
Hessian operator in the form 

where 

aeco> _-le~O,,>n~,~(e<O>q, 

j r<l>= [e<O>,)n[~>.<e<O>jl, 

(3.70) 

(3.71) 

(3.72) 
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with 

H}jO) n(o) fr(o) (3.73) 

H[~) = "-',yn(~ . (3.74) 

Then, following the usual procedure of the perturbed eigenvalue problem, we can 
easily obtain the perturbed solution of the eigenvalue equation for the Hessian 
operator in due course. Using the zeroth-order solutions, 

~(o) I . , (o ) \  . <o) .,(o)\ (3.75) 
I ~ ( ( 0 /  = t~g l ~ ( g ) / ,  

(,,(o) ,,(o)\ = (3.76) 
~'(B)/ 

we have the Rayleigh-Schr6dinger type perturbation series as 

.,(o~ .,(i> (3.77) V(~) = ,~(,~) q -  + ' "  v(~) " ,  

/z~ =/z<~ ~ +/~x) + . . . .  (3.78) 

For  example, we obtain 

v(1) ~ (p,~o~ . ton-1 ,,(o> /,,(o) ~a~<,~ .(o)\ (3.79) 
(~) = - -  ~ ) "v(~)'\'-'(B)l'-~'~ IV(~)/ ,  

~1,=  <v~O~]~c,l, lv~)" (3.80) 
I I I )  Third stage. In this stage, the dynamical potential field disturbs the metric of 
the configuration Riemannian space itself. The basis vectors of R, may then be 
given by 

e~ = e~ ~ + i~s(M)/eq  ~ (i = 1 . . . . .  n) (3.81) 

where / is a unit vector satisfying 

(e~~ I i)  = ( i  I el ~ = 0, <i l  i)  = 1. (3.82) 

Also, the contravariant components of the basis vectors and the metric tensor are 
given by 

e t =  e (~ [1 + A~~176 

x (e (~ ~s(M)/~q k - i), (3.83) 

a tj = a (~ - [1 + A~~ -~ 

• (a(O)~ 8s(M)/Sq~)(a(O)~ ~ 8s(M)/Oq~), (3.84) 

where 

A~O)s(M) = a(O),ffes(M)/Sq,)(Ss(M)/SqO (3.85) 

is Beltrami's differential parameter of the first kind with respect to s(M) obtained 
in R~ ~). Likewise, the Christoffel symbols are obtained as 

[ij, l] = [ij, 1]~o> + (8Zs(M)/Sq' 8qO(Ss(M)/Sq~), (3.86) 

F~ = -~yP(~ + [1 + A(~~ (~ 9s(M)/~q')D~~ (3.87) 
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Using the above, we shall analyze first the locus of the deformed meta-IRC, and 
second, the perturbed normal vibrations. Finally, we shall examine a mechanism of 
energy transfer between A and M in terms of the dynamical potential field. 

First, let a~J be given by 

a ~j - a ~j - a ~~ (3.88) 

then, for the solution of the alteration operator (3,29), we have 

f~ = (a" aU/~q j) ~/~q', (3.89) 

]'2 = (a (~ eak~/eqJ)(sU/aq')(8U/Oq ') 8/eq k 

+ a(~ ') O/Oq k - (aU/~q k) ~/Oq'] 

+ a(~176 m) 8/Sq ~ + (SU/eq ~) 8/8q m] 

+ a'J(eak'l~qJ)(eUl~q')(eU/eq ,) el~q ~ 

+ a'Ja~(OU/OqJ)[(D~~ + (~U/eq~)D~ o)] 

+ a'sfik'(SU/OqOF~~ O/Sq k + (eU/eq k) e/Oq'~]. (3.90) 

For example, we obtain the perturbed solution of the meta-IRC up to the first 
order in A~, as 

q~(~) = q~(~0) - 5~[1 + A~~176176 

x (grad(~ ] e (~ + 0(ATz), (3.91) 

where grad (~ is the first-order differential operator given in R(~~ 

grad(O) = e(0)~ ~/~qt. (3.92) 

The first-order deviation of the meta-IRC vanishes when 1) the gradient field of 
the dynamical potential s(M) is orthogonal to that of U in R t~ or, for the ith 
component, 2) the gradient field of the dynamical potential s(M) lies entirely on 
the q~-surface in R~ ). 

Second, let us analyze the dynamical background effect to the normal vibrations. 
In the present stage, the perturbed Hessian operator is represented by the infinite 
series expansion: 

= ~(o)  + ~f(1) + ~(~) + . . .  (3.93) 



292 A. Tachibana and K. Fukui 

where the perturbation parameter is that for the dynamical potential s(M). For 
example, we have 

j d c o ~  = [e~O~*)H~?~(e(O,I, (3.94) 

~ = te~O~) H ~ )  ( ia ~~ ~s(M)/~q~l 

+ ]ia ~~ ~s(M)/Sqk)H~)(et~ (3.95) 

~ , 2 ,  = _  ]e~O,~)H[~,(a,O,k(~s(M)/~qk)(~s(M)/Oq,)e,O~, [ 

-[a~O,*~(~s(M)/eq~)(~s(M)/eq~)eCO,~)H[~,(e~O,, I 

- ]e~~ ~ eU/~q~(e<~ (3.96a) 

+ lia ~o'~ ~s (M) /~q~)H~ ' ( ia  ~o,'~ ~s(M)/~q~[, 

with 

F~2)~ = a~~ (3.96b) 

In this case, on account of the orthogonality relationship (3.82), all the first-order 
quantities are zero: [the intermediate normalization of the eigenvector is adopted: 

( ~ , ( 0 )  , ~ t m ) x  
~ , ~  I ~,~ ~ = 0 (m = 1, 2,  . .  .)] 

v(~)~ = O, (3.97) (cO 

/z~ ~) = 0. (3.98) 

The second-order quantities are obtained as 

v<9,), ~ (/z~o) . (o)~-~,,(o),.. (3.99a) 

with 

= .  , ( 0 ) / ~ ( 0 )  CBa V'~ ",~(~)I g rad~O~ s(M))(~BO)] g radiO> s ( M ) )  

+ (grad ~~ U I grad ~~ s(M)) ~ �9 ~.,co) <o~ (3.99b) 

and 

/ ~  = _/z~o~ ] \~=)/"~~ ] gradtO> s(M))]= 

- (grad(~ I grad ~~ s ( M ) ) ~  o,~1(~~ I w<~))l =. (3.100) 

In these formulas, the contributions from the second derivatives of the dynamical 
potential s(M) are simplified by diagonalizing the second-order terms as follows: 

(D~~ - ,or,.ij" ~or,,j),v<r) = 0 (7 = 1, . . . ,  n), (3.101a) 

a(O),,,, ,,,j = ~ (y, ~ = 1, n) (3.101b) i j  v v ( y ) v v ( o )  �9 �9 �9 

with 

.<o), ~ (7 1, n). (3.101c) W(~, )  ~ r.- t r v ( y )  = . . . ,  
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Now, let us examine a mechanism of energy transfer between A and M. In order 
to clarify the nature of the dynamical potential field s(M) on the energy transfer, 
we shall classify two typical cases such as CA): grad C~ s(M) is parallel to the equi- 
potential surface, and (B): grad C~ s(M) is perpendicular to the equi-potential 
surface. Other cases may have a mixed nature of CA) and (B). 

Case CA). In this case, vibrational motion on the equi-potential surface directly 
induces the variation of s(M), and then the kinetic energy of the background 
system M will increase. A normal mode which has maximal overlap with grad C~ 
s(M) has a leading contribution to this kind of vibrational energy transfer. 

Now, remember that a normal mode ~ confined on the equi-potential surface is 
characterized by the vibrational quantum number n~. Since the dynamical inter- 
action with M is weak so as to be treated by perturbation theory, the quantum 
number n~ may be conserved during the dynamical process of energy transfer; 
that is, the vibrational quantum number n, may be a good quantum number. 
Hence, in order to account for the energy outflow from A to M, the unit of quantum 
of the vibrational mode c~ should be reduced. In other words, softening of phonon 
should occur for the normal mode c,. Clearly, the result of the perturbation theory 
deduced from (3.100) represents this mechanism of energy transfer in terms of the 
softening of phonon, that is the weakening of the normal mode ~: 

tz~) . (o>j/,,co) = -e-~ I\~<~)I grad <~ s(M))l 2. (3.102) 

Case (B). In this case:, promotion of chemical reaction along the meta-IRC pro- 
duces kinetic energy of M through the coupling with grad C~ s(M). This kind of 
translational energy transfer is further classified according as (B-I): grad C~ s(M) 
is parallel to grad c~ U, and (B-2): grad (~ s(M) is anti-parallel to grad C~ U. Addi- 
tionally, for the vibrational mode ~ on the equi-potential surface, we have 

~2) - (grad (~ U ] grad C~ s(M)) S'  oJ /,,co> = ~ ~ \~(,>[ wc~)[ 2. (3.103) 
y 

Note that the factor (grad C~ U [ grad (~ s(M)) in (3.103) changes its sign accord- 
ingly, which effect is significant when we consider an indirect scheme of vibrational 
energy transfer that may occur on the equi-potential surface. 

Case (B-l). In this case, as U increases along the meta-IRC, the dynamical potential 
s(M) increases in the same direction. In other words, as the system A destabilizes, 
the increase of the net energy transfer from A to M is brought about. This mecha- 
nism of energy flow results in a lowering of the total energy of the system A, and 
finally inhibits the destabilizing motion of A. Conversely, as U decreases, the 
s(M) decreases in the same direction. This mechanism shows that the approach of 
the system A to a stable equilibrium structure is supported by the positive energy 
supply from the background system M; finally, the system A reproduces its 
equilibrium structure. As a whole, the structural stability of the system A is 
guaranteed. 

This is confirmed by another approach of analysis on the mechanism of energy 
transfer that may occur on the equi-potential surface. Since the gradient field 
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grad (~ s(M) vanishes on the equi-potential surface, the direct mode of energy 
transfer in terms of the dynamical potential field s(M) is not present. But an indirect 
scheme of vibrational energy transfer is present, being governed by the vibration- 
like mode 7 of s(M), as defined by (3.101), through the coupling with the vibrational 
mode ~ of the system A. Clearly, the mode of positive ~o r governs the energy transfer 
from A to M, while the mode of negative oJ~ governs the energy transfer from M 
back to A in the reverse direction. Under the conservation law of vibrational 
quantum number with respect to the normal mode ~, the allowable coupling 
scheme should be 

~o r > 0 --~ softening of normal mode 

oJ r < 0 ~ hardening of normal mode ~. (3.104) 

These postulates are confirmed by the formula (3.103). Case (B-2). In this case, as 
U increases, the s(M) decreases. This mechanism shows that the destabilizing 
motion of A is facilitated by the energy flow from M. Conversely, as U decreases, 
the s(M) increases. This mechanism implies that the dynamics of A at the stable 
equilibrium structure becomes seriously disturbed by the dynamical perturbation 
with M, which may finally become so serious that the perturbational treatment 
may not be adequate. As a whole, the structural stability of the system A is not 
guaranteed. 

Likewise, the vibration-like coupling of s(M) with the normal mode of A on the 
equi-potential surface has completely opposite effect, as compared with (3.104), 
because of the negative contribution of the factor (grad ~~ U] grad ~~ s(M)) in 
(3.103): 

oJy > 0 ~ hardening of normal mode 

oJy > 0 ~ softening of normal mode ~. (3.105) 

This kind of heterogeneous character of the coupling scheme may result in the 
growth of unbalanced distribution of the vibrational energy on the equi-potential 
surface. This, again, indicates the structural instability of A. 

Note that, at an equilibrium point of A, we have the same situation as in the Case 
(A). However, since the dynamical event is somewhat of a global nature, the 
critical mode of dynamical energy transfer should be analyzed from a global 
coupling scheme as described above. 

To summarize, a mechanism of dynamical energy transfer from a chemically 
reacting system A to a background system M is discussed. We have clarified the 
typical patterns of energy transfer for a structurally stable system and for a struc- 
turally unstable system; the former case is found in Case (A) and Case (B-I), and 
the latter case is found in Case (B-2). A structurally stable system allows an energy 
exchange with a background system and the structure of the system itself remains 
stable, while a structurally unstable system allows an amplification of the inter- 
action mode with a background system and may finally undergo a fragmentation. 
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For a structurally stable system, 1) an energy outflow occurs in the Case (A) 
through a vibrational mode that lies in the direction of grad C~ s(M), and in the 
Case (B-l) through the promoting mode of chemical reaction and a vibrational 
mode that couples with a vibration-like mode of positive coy, and 2) an energy 
inflow occurs in the Case (B-l) through the promoting mode of chemical reaction 
and a vibrational mode that couples with a vibration-like mode of negative o~. 
This classification is exact if the requirement of the vibrational adiabaticity is 
fulfilled; for a general case where the vibrational coupling with the promoting 
mode of chemical reaction is present, the off-diagonal part of the Hessian matrix 
between the reduced normal modes on the equi-potential surface and the promoting 
mode lying along meta-IRC should be taken into account [10]. 

In the present paper we have laid great emphasis on chemically reacting systems. 
However, the potential applicability for the system having the Lagrangian of the 
form (3.38) and (3.51) is supposed to be universal. The intrinsic nature of the 
dynamical process of the system can be analyzed in terms of the intrinsic dynamism. 
The quantum mechanical formulation is also available [11]. 

4 .  E x a m p l e  

In this section, we shall elucidate the applicability of the fundamental principle of 
the intrinsic field theory of chemical reactions, that is the geodesic variational 
principle to an IRC, by using a model potential surface. 

The shape of the model potential is illustrated in Fig. 6 of [10]. This model shows 
a typical pattern of isomerization reaction A ~ B ~ C, A and C being the minima 
and B the transition point. The IRC appropriate for the isomerization reaction is 
depicted in Fig. 4. 

Suppose a variational parameter e, being connected with a virtual trajectory as 

x 2 

Fig. 4. Pattern of an isomerization 
reaction model A ~ B ~  C [10]. 
Folded line from A through B to 
C shows a virtual trajectory used in 
(4.1) of the text 

- ~/4 

:~ x 1 
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shown in Fig.  4. Then,  we have the length o f  the t ra jec tory  in the r igged Rieman-  
nian space R* as 

~ - y +  dsa 

= lau(,4  B)I + IAU(B  C)l + h : +  0(:)  (4.1) 

with 

IAU(.4  B)I = IAU(B  C)I = 1/16a z, (4.2) 

h = (a~/b 4) In ( 3 ~ ] / 4 )  + 1/16a z ( > 0 ) ,  (4.3) 

where a and  b are  cer tain constants  [10]. Clear ly,  the  I R C  cor responding  to  the  
locus o f e  = 0 satisfies the geodesic var ia t ional  pr inciple  (2.13), yielding the min imal  

value o f  the functional .  

Acknowledgement. This work was supported by a Grant-in-Aid for Scientific Research from the 
Ministry of Education of Japan. 

References 

I. Fukui, K.: Theory of orientation and stereoselection. Berlin: Springer-Verlag 1970; 
Fleming, I. : Frontier orbitals and organic chemical reactions. London: Wiley 1976 

2. Woodward, R. B., Hoffmann, R.: The conservation of orbital symmetry. New York: 
Academic Press 1969 

3. Fukui, K.: J. Phys. Chem. 74, 4161 (1970) 
4. Fukui, K., in: The world of quantum chemistry, Daudel, R., Pullman, B. Eds. Holland: 

D. Reidel Publ. Co. 1974 
5. Fukui, K., Kato, S., Fujimoto, H.: J. Am. Chem. Soc. 97, 1 (1975) 
6. Kato, S., Fukui, K.: J. Am. Chem. Soc. 98, 6395 (1976) 
7. Kato, S., Kato, H., Fukui, K.: J. Am. Chem. Soc. 99, 684 (1977) 
8. Ishida, K., Morokuma, K., Komornicki, A.: J. Chem. Phys. 66, 2153 (1977) 
9. Joshi, B. D., Morokuma, K.: J. Chem. Phys. 67, 4880 (1977) 

10. Tachibana, A., Fukui, K.: Theoret. Chim. Acta (Bed.) 49, 32 (1978) 
11. Tachibana, A., Fukui, K.: Theoret. Chim. Acta (Bed.) (in press) (1979) 
12. Whittaker, E. T.: A treatise on the analytical dynamics of particles and rigid bodies. 

Cambridge: Cambridge Univ. Press 1937 
13. Moller, C.: The theory of relativity. London: Oxford Univ. Press 1952 
14. Dyson, F. J.: Phys. Rev. 75, 486 (1949) 
15. Kittel, C.: Quantum theory of solids. New York: Wiley 1963 

Received October 11, 1978 


